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ABSTRACT

Ton acoustic phenomena are studied in s cylindrical geometry
for two distinect cases. A large amplitude compressive pulse is
seen to evolve into solitons. The evolution of these solitons
and their dependence on initial conditions show a similarity to
previous work on one dimensional solitons; Dimensionless scaling
erguments are used to distinguish between the two cases. In the
'presencé of a stesady state uniform cylindrical beam, approximated
by‘a ring in Vi,.V¢, an ion-ion beam insgtability is observed. This
instability exists for a limited range of beam velocities and shows
a marked similarity to the strictly one dimensional icn-ion beam
instability. Solution of the appropriate dispersion relation

shows agreement with the observed phenomenon.
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I. INTRODUCTION

~ The investigatibn of ion acoustic waves has been the sub-
Ject of extensive study in recent years. With the invention of
‘the double plasma (DP) device at UCLA [Taylor 1965943 Taylor 1972]
nevw and wider areas of investigation were opened. Largé ampli-
tude planar waves can be efficiently launched in.a piasma with
variable electron to ion temperature ratio [Mackenzie l9fl].
Steady state large diameter ion beams can also be injected into
the plasma.

The initial work with a DP device was an investigation of
collisionless électrostatic shocks [Taylor 1969B]. Raﬁp
excitations of varisble height and rise time were applied to ther
plasma. For large amplitude excitations ( %? % .3) the initial
ramp was obgerved to steepen and form a collisionlegs electro-
static shock. A small fraction of ions were reflected by the
potential jump of the shock forming a double humped ion distri-
bution in front of the shock.

These reflected ions represent a localized ion beam in the
plasma. Stern and Decker [1971] report observation of an instability
due to these reflected ions. A velocity gradient was established

by Injecting an ion beam from the target into the driver chamber.



When a large amplitude pulse is launched into the target chamber
the reflected ions travel baliétically from the point of reflection
until the velocity gfadient brings the precurgorsg into resonance
with the local ion acoustic velocity. A resonent transfer of
energy from precursors 1o noise fluctuations regulis in the growth
‘of the npise until it engulfs and destroys the original wave,
A similar study of turbulence associated with precurscrs
of ion acoustic shocks by Means _e_i_}_a_{. [1973] atti'ibutes the cbserved
turbulence, in their case, to the three dimensicnal nature of the
instability. With no velocity gradient present there are modes
oblique to the direction of the wave front which resonate with the
reflected precursors. It is these off axis modes that result in
the turbulence. Three gualitetively different effects were observed.
.For high electron to ion temperétgre ratios’(Té/Ti) and small ampli-
tudé, laminar shocks with no turbulence were observed. For moderate
Te/Ti ratios or amplitude turbulence, restricted tb the region ﬁccupied
by the precursor ions waslobserved. For low T;/Ti or large ampli-
tude, the turbulence engulfed the-shock and destroyed its structure.
An investigation of the heating of an lon beam was made by
Taylor and Coronitti [1972]}. A uniform planar ion beam with velo~ . \%\
city greater than twice the ion acoustic velocity was injected
from the driver chamber into the target chamber. The ion-ion

beam instability excited off-axis modes that provagated oblique \L\



to the beam.direction. The ion beam is seen to be heated until it
forms a quasilinear plateau on the background ion distribution.

The évolution of non-linear compressive pulses that are governed
by the Korteweg-de Vries equation was made pogsible by the DP
device. Ikezi, Taylor and Baker [1970] investigated the properties
of single solitons. The width, amplitude and velocity were shown
to be consistent with the definition of solitons. The interaction
of two solitons was also studied. Hershkowitz, Romesser and
Montgomery [1972] compared the evolution of an initial condition
into multiple solitons with the analytic théory. A similar report
has been made by Ikezi (197371 in which both pulse and continuous
wave initial conditions are treated.

The objective of the experiménts reported ‘in this disser- -
tation was to investigate in a cylindrical geometry two kinds of
ion acoustic phenomens. A study of the evolution of weakly non-
linear compressive pulses in a ¢ylindrical geometry was made to
determine if solitons or soliton-like objects existed. Once their
existence was determined & detailed comparison between plansr and
cylindrical solitonsg became possible, The second ares of investi-
gation is the ion-ion beam instability in =a cylindfical geometry.
For steady state radiaily ingoing beams an ion-ion beam instability
is expected to occur. The dependence of the instability on beam
veloelty and beém.density has. bteen investigated and compared with

the analytic theory for a linear instability.



IT. EXPERIMENTAL APPARATUS

The experiments reported here werse pefformed in the Universify
of Towsa double plasma device, Armodification wa.s made to allow oper-
ation in a cylindrical geometry. The Univeréity of Iowas double
plasma device (Fig. 1) consists of two aluminum cylinders (length
37 em; diameter 38 cm) placed end to end but separated by an insu-
lating ring. In each chamber 36 filaments are located symmetrically
near the outside wall. Two cylindrical fine mesh screen (200 lines/
inch) of radii 10 and 1l c¢m and length ~ 30 cm are mounted concen-
trically in one end of the device. Electrons emitted from the filaments
which are biased at -40O volts with respect to the wall produce the plasma.
The outer cylindrical screen is allowed to float ¢ausiﬁg it to charge
up negatively preventing the flow of electrons between the inner and
outer plasme. The inner cylindrical screen is grounded to help de-
termine the plasma potential of the interior plasma. A shield was
used to prevent line of sight paths between the outer (driver) plasma
and the inner (target)} plasma. Typical operating paraméters are
ion density (no) ~ 107 cm_5, electron temperature'(Te) 1 - 3.0 eV,
and an ion temperature (Ti) € .2 €V [Hudis et al. 1968] at a‘pressure

of 3 X lo_h Torr,



Cooling coils are wrapped around the chamber and attached
. *
using Stycast 2850 FT epoxy. The system is evacusted using a 4 inch
T

oil diffusion pump o0 an ultimate base pressure of ~ 5 X 10 ' torr
after pumping down. This assures us of negligible impurity con-
centration if data ig not taken until the ultimate base pressure
‘is reached. '

There are two modeg of §peration for the DP device. If the
-potential of the driver chamber wall iz raised with fespect to the
target chamber wall (ground) s uniform symmetric cylindrical beam

is launched. The beam energy is adjustable being a function of the 7&

)
applied potential difference. The beam is detected using a gridded
energy analyzer as shown in Fig..E. The front screen (200 lines/inch)
is allowed»to‘float and prevents electrons from entering the analyzer,
The collector plate is biased at -67.5 volts to collect ion current.
The voltage to the center grid is ramped with a sawtooth volfage.

Only those particies with gufficient directed momentum %o overcome

the barrier represented by the second grid can be collected. This
particular design gives directional resolution as will be seen later.
From geometrical considerations the analyzer can detect_particles

in a cone of half'angle-l6°. The fields generated in the plasma

will tend to broaden this. An energy resolution of .1-.2 eV is

poséible but deterioration of resolution cceurs with use and exposure

to the plasma. Figure 3 shows typical energy analyzer traces for

. S~
Fmerson and Cumings, In¢. Canton, Mass. //>\\\M



several beam energies. The signal represents the flux of particles

with energy greater than @s plotted versus @s. If we then differen-
tiste with respect to time {assuming @S is linear with time) we
recover the velocity distribution function f(v) plotted versus @S.
Figure L4 shows a differentiated energy analyzer trace. The temper-
ature of the background ions is seen to be approximately .2eV and
a well defined beam is seen with energy 3.2 eV. The width of the

beam appears slightly wider than that of the background ions. To

determine the temperature, however, we must replot the data as f(v) versus

v. Figure 5 shows the effect of doing this. The beam as expected

will be much colder after being accelergted. To find the heam

density we must look at the data thab has been replotted as £(v) vs v.

Measurement of eiectron density is made using a Langmuir
probe. To determine the density & large cylindrical probe (length
1 inch; diameter 1/8 inch) iz used. For detéction of waves a small
wire biased'abové,the plasgma ?qtential is uvsed {to detect electron
‘saiuration current,

Before looking at some typical data it must be noted that it
is Virtually impossible to form truly cylindriecal screens. There is
most probably a variation in the center of curvature of ~ .5 cm in

the screen and for this reason no divergence is observed at r = 0.

{

&£

In addition there is a competition between damping and geometrical growth.

Experimentally, they are found to be very clogsely balanced.

Upon application of a half sine wave pulse to the driver

chamber a cylindrically symmetric ingoing wave is launched at r = 10 cm.



The wave propagates inward, converges at the center and emerges as

a cylindrically symmetric outgoing ﬁame. If we set the probe atl a
fixed position and look at the perturbed electron density 2s a function
of time, we see first the ingoing wave and at a later time fhe'wavé
after it has converged at the center and emerged as an pﬁtgoing

wave. This is apparent in Figure 6 where the perturbed electron
density as a function of time is shown for 1 em intervals. The ion

5

acoustic velocity as measured from this is 2.16 X 10° cm/sec which
indicates an electron temperature of ~ 2.0 eV,

The presence of both ingoing and outgoing waves mekes it
difficult to make a detailea comparisaﬁ between cylindrical and planar
phenomenon. In order to make this comparison a major modification
was méde. The cylindrical screéns were removed and a rectangular
chamber was added to the end plate as in Fig. 7.‘;A deformable sepa-

ration sereen that was adjustable from & plane to a halfl cylinder of

radius 10 cm was used. Then, under nearly identical plasma conditiocns, .

a comparison of planar waves and half cylindrical waves was made.

Using a lock-in amplifier* it is possible to take an inter-
ferometer trace of a continuous wave excitation. Figure 8 shows
the results for a planar separation screen with a freqﬁency of 100 kH=z,
The lock-in amplifier detects the amplitude of the wave at a given
phase with respect to the gpplied signal. For a plane wave we expect

it to have the form:

*
Par model HR-8.



ik + ik r + if
Re Aoe r 1

AA(r)

k.r ilkr + @
= Aoe lRee T

_kir .
Ae cos(k r + gy

n

For the case shown in Figure 8 we can measure kr and ki. From this
k,

we find — = .0bL, From this and assuming ion Landau dumping we

k
- Pp ‘ .
ean determine Te/Ti to be spproximately 13. This agrees with T ~ 1 eV

end T, ~ .1 eV. -
1
A similar interferometer trace for the case of the separation
screen deformed to a half cylinder of radius 10 cm is shown in
Figure 9. Unlike the planar case, the wavelength is no leonger
constent for the cylindrical waves. The received amplitude for

the cylindrical waves will be the sum of Jo(kr) and Yo(kr).
Alr) = Re{AO[JD(kr + B) + 1Y (ke + ,@)]}

where k = k} + iki. For the case § = 0 kr can be expressed as

10
|k]re1 . Tables of this are available [Nat. Comp. Lab., L1947, 1950].



Figure lQ shows a compubted interferometer trace for cylindrical
waves using the values kr and -ki as determined from the planar
interferometer traces. The wave length is not constant in this
case, though the disparity is much less than is measured from
Fig. 9.

Dafa is taken using a Biometion 610B transient recorder
which acts as a fagt analog to digital converter. A description

of this system is given in the Appendix.
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IIT. SOLITONS

A. Theory

The properties of systems that support soliton solutions has
generated a great deal of interest in recent years [Scott et al. 1973].
Extensive work in ﬁl&sma rhysics has been carried cut since Washimi
and Taniuti [1966] showed that weakly non-linear ion acoustlc waves

are governed by the Korteweg-de Vries (XKdV) eguation:
1 _
en = =0
+3 | (1)

Equation 1 is written in a frame moving at the ion acoustic velocity,

n is the fractional density perturbation, x is the distance in the

——@—)l/ 2}md

moving frame measured in electron Debye lengths =
' : ®© lhm e
o

- o s s -1
t is measured in ion plasma periods wpi

The asymptotic stationary solution corresponds to a super-

position of spatially separated solitary pulses, solitons.

(x, t) =% 2¢, 8 chg[(il)l/e( 2e.c t/3)/n . +
n(x, = 5 5 Se 3 x - Rejel Me ¢j

) kT
¢, is the ion acoustic veloeity f:;g » €5 and ¢j'are constants
i .



determined by the solution of an appropriate time independent
Schrodinger equation with a potential well that is proportional
to -1 times the initial spatial density perturbation [Hershkowitz
et al. 1972]. The asymptotic stationary soliton solution arises ffom
a competition between non-linearity and dispersion. |

There are several properties of one dimensional solitons
that can be used to identify them. Among them are: 1) Arbitrary
positive (compressive) density perturbations evolve after sufficient
time into a superposition of spatially separated solitons, or solitary
pulses; 2) The number and amplitude of the solitons is determined
by the solution of an approfriate time independent Schrodinger
equation; 3) The soliton velocity is given by [1 + % (%? max]cs
where (%?)max is the meximum density perturbation of the soliton;
4) The spatial width of the soliton, is proportionsl to [(%? maxl-l/e
which implies that the product of the square of the maximum ampli-
tude multiplied by the width is a constant; 5) Solitons retain their
identity upon collision With‘other solitons. Experimentally these
properties have been verified by Ikezi et al. [1970] and Hershkowitz
et al. [1972].

Maxon and Viecelli [197L4A] have reported the first work
on solitons of dimensionality greaster than one. They considere@

spherically symmetric perturbations and derived a modified KdV

equatioﬁ appropriste to a spherical geometry:



This equation is valid except in a region near the origin. A simi-

lar equation can be derived for cylindrical coordinates [Maxon and

‘Viecelli 197487 starting with the fluid equations appropriate for

a cylindrical geometry with no z or § dependence.

nwv
r

LR _a%(nv) + - =0 Continuity eq.uation

Tt v ST = e Momentum equation

_ kT
In these equations & is in units of

=€  -n Poissen's egustion

e . :
; N in units of

of hD s, t in units of m-% and v is in units of c¢..
e pi ]

(2)

)

(%)

Dy T in units

We now make the transformation to a frame moving inward at

the ion acoustie veloecity.

£ = -61/2(r + 1)
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where € is a small parameter that will be used for expansion. The
scaling used in the transformation is chosen to be the same as
that of a soliton. We now expand the potential density and velocity

in powers of €.

1+ en(l) + EEH(E)

=
H

v = ev(l) + Eev(g)

§ . e@(l) + €2§(2)

The time and space derivatives transform to

3t T 3t 3 3T 3 3E 3

#

> ¥ 2 23 _ 123 323

From the transformation we find that



| o r.= _€-3/2_(€§ + 1)

Equations 2, 3 and L4 then transform to the following equations

respectively:

65/2 a—an'[n(l) +.en(2)] - 65/2 é%[n(l) + en(e)]

- 53/2 -gag— [1 + en(l) + een(g)][v(l) + ev(e)]

€5/2fl + En(l) + Een(e)][v(l) 4 ev(e)] -

- =
| 5)
5/2 20 ¢ @)y /2 gsg_[vu) . ev(®)g
- es/e{v(l) + ev(a)] 5% [v(l) + ev(g)jr
= 7 2 (1), (2D, | (6)

of

ik
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2 3
@ —-—-:EQ [@(l) + e@(g)] + (E§€+ ) % [?ﬁ(l’) + eé(e)]
, _ 5 (1)2 2 (2)
= Gé(l) + e2@(2) + < 52 - En(l) -€n '

(7)

We can now collect terms of various orders of €.

o(e) from Eq. 6.

e DI ¢ DI

o(e3/2)

(1) (1)
on v B
3 + T 0

av(t) 4 2e(l) _
o ES

for n

@) @) 5)

+0as |g] 4+ =
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Then we obtain

n(l) + v(l) =0
W, 0
IRCORIN ORI CH'

To find the differential eguation governing n(l) é(l) and v(l) we

2

must go to higher order.

0(62)

= 30 2 () 8)

To this point we have not had to account for contributions
arising from terms with % dependence. The % factor gives rise to

a factor of the form

E_B/e
€E + 7

The order of this term depends upon the denominator. If |€§| < ]ﬂ|
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this is of 0(65/2) while if || << {eg] this is of O(el/e). The

former will be assumed and its implications will be discussed later.

0(65/2)

(1)

(1) (2)
3n " 3 () (1) 3 (@), v _
ST e 2 [n'\Hy }-3-5& 1-=g=0 {9
e ® )y ) 2B (10)
3E ] QE Bf '
(2) 3v(?)
Solving Bg. 8 for n and Egq, 10 for ——=—— and substituting these
af
results into Ed. 9 we obtain:
2 1y 5s®) 5(D) 4 325(1)
B NS - - B

ﬁhich is the_modified K4V equation appropriate for cylindrically
symmetric ingoing perturbation.

In deriving this it was assumed that |eE| «< 1|, To under-
stand the implications of this we must consider how the initial
condition is entered intc the problem. The initial condition is

centered at £ = 0 in the moving frame,



_ /2, -
E = -¢ \ro+to)-0
r = ~t

o e

T—= c5/2
T]o - o

where T, is the radius at which the initial perturbation is applied.
The initial condition is then specified as n(g, no). The initial
time is negative and time increases as the pulse propagates inward.
The time T = O at which |eg| << |7| cannot possibly hold is the time
for an ion acoustic wave to propagate to the origin where an expan-
sion in orders of ¢ would not be valid in any case.

The value of £ represents the distance traveled in the
moving frame. The solitons have a velocity'ﬁhat is dependent upon
the amplitude and in addition we expect an approﬁimately-mi; growth,

r
Assuming this we can approximately describe the soliton velocity as:

r \1/2
nlo - -ct” cs
o

. 8 . . A
where t° 0, where r = T, and ?? o is the soliton amplitude st

il



T=T . The constant A describes the detailed veiocity amplitude
dependence and is of order 1. The distance in the moving frame is

then given by

1/2
-2 o e %
n'o !
r -ct
o
The quantity T is given by
Ro
M=t'-%t =t‘-—
o CS'
The relation !
|egl << ||
then becomes
" r 1/2 R
AS [0 VT e 2 g
n'to ‘ ) c
Slr -c¢t s
. o s

We can now choose representative values for t’' and evaluate the

I
inequality. For t ' = '559“ which represents the time for an ingoing
5

Llinear wave to propagate half the distance to the origin we obtain



A §£|0\/2_ << 1

n

which is true for moderate %%|0.

3y
For t' = v
s
Werobtain
&n 1l
<AL} o =
A 11‘0 < 6

Becauserof the presence of damping the criterion is less stringent,

since a —-]—'—— growth ig not observed.

Thz evolﬁtion of a weakly non-linear compressive pulse in
the cylindrically symmetric geometry should be governed by the
derived equation. This equation differs from the equation appro-

priate to spherical geometry in the factor of 1/2 associated with

§
the «~ term.
n

B. Pregentation of Measurements

The propagation of low amplitude pulses in the fully sym-
metric geometry has already been noted. For low amplitude pulses
the Ingoing wave and outgoing wave are similar in shape and width
to the appiied pulse. As the_amplitude is increased this is no

longer true. TFigure 1l shows the received sgizmal detected at

20

r = 0.5 em as the height of the spplied pulse is increased. For low
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amplitudes & linear ion acoustic waﬁe is launched. Ag the amplitude

is inereased the wave grows in.amplitude, steepens and forms into an
object that can be identified as a soliton [Hershkowitz and ﬁomcsser
1974]. For still higher applied voltages the soliton decreases in ampli-
tude and a new faster pulse appears. This new pulse is a burst of
'pa;ticleé, or & pseudovave [Alexeff et al. 19681, tréveling baiisti-
,_cally through the plasma with energy equal to the applied potential

kT S
pulse. For pulge amplitudes less than ~ —= no pseudowave is launched.
€

Figure 12 shows a comparison of the propagation of & linear

&1
1

(%? ~ 17%) wave. At r = 9 cm for the linear pulse we see first in

< 1%) ion acoustic wave and a large amplitude non-linear

time an ingoing wave that clésely-resembles the gpplied half sine
wave pulse,  followed at a later time by a similar outgéing pulse.

As the probe is moved closer to the center the ingoing and ocubtgoing
pulse appear cloger in time andrfinally merge &t r = ,5 em. At this
point the receive@ gignal sgain closely resembles the sapplied half
sine wave pulse. For the large amplitude pulse at r = 9 em the
ingoing wave again closely resembles a half sine wave puise. The
outgoing wave which has had a longer time to evolve has evolved into
what can be identifiéd as D solitons. The evolution into these
solitons is shown in the remaining traces, The increased velocity
with respect to an ion acocustic wave is evident from the trace

at r = 0.5 em. The average velocity of the largest ingoing soliton

is found to be approximately 1.17 Cyr



The probe was left in one position and the width of the
epplied pulse varied to determine if the number of solitons was
depeﬁdgnt upon the applied pulse width. Fig. 13 shows the received
signal at .5 cm and at T = 6 cm as the width is varied. For very
narrow applied pﬁlses 8 single soliton is observed. As the width
is incressed the first soliton increases.in amplitude, speeds up
gnd becomes narrower, a second soliton is seen to form. As the
width is further increased the golitons continue to incresse in ampli-
tude and velocity. The second soliton merges with the first soliton
and for very wide applied pulses no individual soliton is cbservable
though the applied pulse has noticeably steepened. From the data
shown for r'= 0.5 cm an estimate of the product of the width of the
goliton multiplied ﬁy the square rooﬁ'of'the maximum emplitude shows
it to be constant within 10% for the first 4 traces.

To detefmin¢ the velocity amplitude relationship of the
solitons, use was made of the fact that for very narrow applied
pulses where a single soliton was found the soliton amplitude depends
on the width of the applied pulse. The soliton amplitude can be
varied from ~ 1% to 10% while maintaining essentially a single soli-
ton. By following the propagation of the pulse the velocity can
be determined.  The propagation of the point of maximum amﬁlitude-
was followed at 1 cm inﬁervals for several soliton amplitudes. These
results were least équares fit to give the results shown in Fig. 1h4.
From this the velocity;amplitude relationship for cylindrical soli-

tons was found to be:
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V= [+ (1.05 £ .2) %’-|m3cs

The measurement of the velocity-amplitude relationsﬂip was
simplified by the fact that over most of the ingoing trajectory the
competition between geometrical growth and damping balanced (see
Fig. 12). The soliton amplitude was essentially constant over the
ingoing portion of the trajectory. For a purely ingoing linear
wave we would expect a (ro/r)lf2 growth to occur. After accointing
for this geometrical increase the ion accustic pulse is calculated
to have damped by a factor of 3 in propagating 9 em. Making the
same correction for the soliton in Fig. 12 we caleulate a damping
of a factor of 1.5 in traveling 9 cm. It must be remembered that
the (1:'0/1')']'/2 growth should hold only for the linear wave. The
observed differences may.be due to either differencés in damping

or differences from non-geometrical growth.

C. Discussion

We can summarize the properties of two dimensional solitons
be stating that compressive density perturbations evolve into soli-
tons. The number of solitons is determined by the width and ampli-
tude of the initial density perturbation. Rarefactive density
perturbations do not evolve into solitons. The solitons retain their

jdentity after converging (colliding) at the center. A1l of these
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agrée with the well kmcown properties of one dimensional solitons.
In addition, we find that the soliton width multiplied by the
square root of the soliton amplitude is approximately constant

even though the amplitude, width and velocity are functions of
time, The velocity is greater than the velocity of a correspﬁnding
-one dimensional soliton. Both of these additional pfoperties held
for three dimensional solitons and the first also holds for one
.dimensional solitons.

It has been seen from these data that the properties of
cylindfically symmetric solitons are remarkably similar to those
of one dimensional golitons; Since no analytic theory exists for
golutions of the modified Kdv equation it was of great interest to
investigate vefy carefully the. detailed differences and similarities
that occur.

It was very difficult to state when the propagating pulse had
reached a final aésympﬁotic state from which to evaluate properties.
To overcome this the scaling properties of the ordiﬁary KAV and
then the modified KdV equation were investigated. This was first con-
sidered by Berezin and Karpmen [1967].

The ordinary KdV equation is written as;
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We wish to consider a class of initial conditions of the form

n(x, o) = 2 1)

where %? is the amplitude of the initial perturbatibn and L is the
width., f(A) is the functional form of the initial pérturbation,
e.g., sgquare pulse,‘half gine wave pulsé, etc., We now transfofm
to a new set of variables where the transformation depends upon

the initial condition according to

=
ofe

Lt
H
M
5
1
b
et

Upon substituting into the KdV eguation and simplifying'we obtain

~ ~ e
§:+.§.E%H§£+%_%§_%=O
3t 77 ax L’ ax

We have the freedom to choose A such that the coefficient of the

second term vanishes. Upon simplifying we obtain

~ ~ . 5'\'
é% +n 3B, fib-éj% =0 here o° = L2 %?
dt 3 207 i



This was obbained using the following trensformation

We
n
B2
"

T.on
n

i
£t

Under fhe givén transformatioﬁ all iﬁitial conditions are
transformed to & unit depth-unit width initial conditicn. Conditions
with the same numeriesl values for o evolve identically in the scaled
coordinate system even though the evolution in the laboratory may be
quite different. The number of solitons which evolve is determined
by the numericsl value of o.

There exists a very wide variety of initial conditicns for
which the evolution in this scaled éoordinate gystem is identical.
The number of golitons in each case must be identieal. It comes,
theﬂ, as no real surprise that the dimensionless scaling of the time
independent Schrddinger eguation is the same as the scaling for the
ordinary KAV equation. The verification of this secaling foﬁ planar
excitations and measurements of the'scaling for the cylindrical case
is of interest and has not been considered before. In. order to
carry'this out the deformable screen DP device was used.

The importance of the dimensionless scaling method is that
it applies for all time and not only in an agﬁymptotic region. The
known analytic theory provides a connection between the initial con-

dition and the final assymptotic state where the solitons are
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spatially separated. The use of the dimensionless scaling method
allows & direct compgrison of soliton formation during the evolu-
tion from the initisl condition. It is only needed to be able to
jdentify a point in thé evolution process that is easily identi-
fiable for all initial conditions. This point in the evolution X
‘must also be able to be measured quite accurately. The point of
emergence of the first soliton from the remaining envelope was
chosen . As can be seen from Fig. 15 the formatioﬁ of the local
minimum between the first soliton and the remaining envelope of the
initial condition occurs guite guickly. It is easily and accurately
measured and appears for all initial conditions that evolve

into solitons,

A large number of data points have been measured for a wide
variety of initial conditions; The dimensioniess time, T, has been
calculated as has the value of the dimensionless scaling parameter c.
These data are plotted in Fig. 16. The points represent both planar
and cylindrical initisl conditions. Both initial conditions are
uniformly distributed, so no distinction is made between
them. The points are distingpishgd by varyling values of _

' €?|0 ¢f the initial condition. A systematié variation with %?lo is
seen. Larger amplitude initial conditions require a longer time to
evolve in the scaled coordinates than an initial condition with identi-‘
cal value of o but a smallér amplitude initial condition. While we
do not know the analytic form to be expected we do expect the points

to fall on a smooth curve if the scaling holds.
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‘There are seversl sets of data that were taken for fixed
initial condition amplitude and var&ing the width., These are
shown in Fig. 17 vhere a differentiation is made between planar
end cylindrical initial conditions. The same functional dependence
is observed for all sets of planar data. The slope in each case is
nearly idenﬁical bpt there is a consistent deviation with the initial
value of f’f The cylindrical solitons, however, do not display the
same functional dependence as is evident from the figure.
Differences do exist for the scaling of the modified K4V
equation for a e¢ylindrical gecometry. The presence of é% term does
not affect the transformation used as it will scale the same as the
3n ternm,

o

The presence of the %%-term, however, restricts the choice of

initial conditions. For the crdinary K4V eguation a transformation

of the type
x'=x+a
t' =1t + &

leaves the form of the equation invariant. We can then define n(x, o)
to be an initial condition centered at x = 0 at time t = 0. Making
the substitution x = £,t = 7 and using the above translation the

form of the modified KAV equation becomes



which is no longer the initial equation.

If we onsider the class of initisl conditions of the form
&n X
n(x,,to)-— 0 f(L)

the scaling then converts the modified Xav equation into

3
on on 1 3 _
5 = 0

n
T+t D o — — +
ot ox - ax3

A
2t
The initial condition becomes a unit width-unit depth initial con-
dition but since r scales as r/L it is situated at r /L. Figure

18 shows graphically the effect of the transformation for the ordi-
nary KdV eguation and the modlified cylindrical KAV edquation. In the
scaled coordinate system the initisl radius of the perturbation
depends upon the width of the initial condition since the initial

radius T, in Debeye lengths, is approximately consfant for all dats.

n
2t

scaled coordinate system. For this reason we would not expect

The importance of the term depends upon the initial radius in the
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identical values of ¢ to exhibit the functional dependence as the
width is véried'to change <. 'This ig in agreement with the data
in Fig. 17.

There exists a wide variety of equationg that suppoert soliton
solutions, ineluded in these are attempts to modify the ordinary
‘Kav equaﬁion to include more rgalistic plasma effects. Tappert
[1972] has included finite ion temperatures. Ott has included
damping due to ion-neutral collisions [1971] and btt.and Sudan

have treated Landau damping [1970].
Schamel [1973] has derived a modified KAV equation that allows

for trapped electrons

where b is a parameter that is the measure of electron trapping.

Under the transformation

~ X %'_ én/n + ~ 8n

x =71 ’ C T i 2 =0
we obtain

an | ~l/2 30 | L 3

= -t ——"{"—2——:0
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where

/e
o= .[%/ I'2]1/2

Recomputing T and ¢ and assuming b = constant does not significantly
improve the results. The value for b is determined by the electron |
traﬁping. Only.a weak dependence on %? is aliowed 80 thé.aséumption
of constent b is reasonable. This modified KAV appears insufficient -
to explain the deviations in Fig. 17.

Tran and Hirt [1974] have investigated the effect of a two

gspecies plasma deriving a modified KdV equation

2=+

n, %, ¥n
M -

The value of ¥ is a very sensitive function of the relative con-
centration and mass ratioc of the second species which can arise
from impurities in the plasma. A 24, concentration of hydrogen in

an argon plasma changes y from 1 to .067. The'diﬁlensionless time

and scaling parameter appropriate to the egquation are:

_7.6n/nt o = [y bn/n L2]:1./2

- L
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Both T and ¢ are functions of ¥, One could attempt to explain the
systematic deviation with %? iﬁ Fig. 17 from thié. It would not

be consistent with the manner in which the experiment was performed
however, Much of the &ata was taken with identical plasma and
vacuum conditions. Increasing the amplitude and dzcreasing the
‘width to obtain the same value of ¢ yielded a different dimensionf
. less time for the evolution. BSeversl measurements were taken within
8 short time interval. |

_If we choose the time scaling of the ordinary KdV equation

and search for a functional form of o that gives a smooth curve we

obtain the results shown in Fig. 19. The value for 0 is found to be

o = [(3)7p2y?

No equation has been found that will yield this scaling. It

may be necessary to change the scaling of both ¢ and T.
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IVv. CYLINDRICAL ION-ION BEAM INSTABILITY .

A, Experimental Measurements

It has already been seen that by applying a BC potential
between‘taréet and driver plasma a steady state radially ingoing
ion beam can be established (Fig. 4). For a limited-range_of beam
velécity & coherent ion-ion beam instability iz produced [Hershko-
witz Eﬁ_éi- 19743, This is the result of cylindrical stanaing waves
resonating with ingoing and outgoing besms. This experiment differs
from those in a conventionai DP device in that the boundaries play
a very important role., The inner grounded screen requires vanishing

potential on its surface.

The instability is detected by a positively biased Langruir
probe which collects electron saturation current. The signal is .
then analyzed using a spectrum analyzer.* The power spectrum for
various beam velocities is shown in Fig. 20. For'beam velocities
greater than those shown the instability abruptly ceases as it does
for beam velocities slightly less than those shown.  The beam velo-
cities are determined by digitizing the energy analyzer for each
beam velocity. The digitized traces for a given beam velocitj
are added 64 times to reduce the level of fluctuations due to the

instability. The averaged traces are then least squares fit to the

*
Tektronix 1L5 plug in unit.



sum of two Gaussians with the width restricted to be the same.

A typical it is shown in Fig. 2l. - In this manner the beanm
velocity can be accuiately determined even in the region where
~ the beam is not resolved.
The instability manifests itself zs a series of discrete
frequencies that are approximately harmonically related as was
seen from the power spectrum. .A_simul‘taneous comparison of detected
-signals at different positioné using the two probes showed the »
oscillations to be in phase everywhere. This suggests cylindrical
standing waves. To verify this the power spectrum was cbserved
at several radiel pogitions. The results are shown in Fig. 22.
The lowest mode amplitude deéreasés monctonically as the probe is
moved from the center to the outside. The second mode;. however,
shows & node at ¥ = 7 cg and aﬁ investigation of the third mode shows
2 nodes between the center and the outside. This further enforces
the identification of the instabllity as cylindrical standing waves,
AFI'om Fig. 20 it is apﬁarent that instability frequeﬁcy Vdepends
upon beam veloecity. A plot of this ig showm in Fig. 23 where we
see that the frequency is linearly proporticnal to beam velocity
fbr‘the lowest 5 modes seen. For the lowest‘mode we obtain from

Fig. 23

w = -66 VBk
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Eefore-attempting to compare these results with theory we must
determine the distribution function approvriste for the beam. This
‘is accomplished using two energy analyzers; one oriented in the
radial direction and the other in the azimuthal direction. A beam
is observable by the radial energy analyzer for all radial positions.
The azimuthal analyzer can detect & beam in & region péar the‘centgr
of the chamber. The gize of the region was seen to defend upon the
energy of the beam. Figure 24 shows a comparison of radial and
azimuthal energy snalyzer traces for a beam of energy 6.0 €V. The
change in amplitude of the background plasma as the radial analyzer
approaches the cylindrical screen is due to depletionlof the plasma
in the region between the analyzer and the screen. This depletion
arises from the blocking of icn-trasectéries by the energy snalyzer.
Iona that would normally pass ﬁhrough the region oceupied by the
ranalyzer and refiect from the region near the screen can no longér
do so. The radial energy analyzer deﬁetts a beam for all radii
while the azimuthal analyzer detects a well identified beam for
radii less than b em. If we decrease the beam energy the radial
analyzer shows similer traces. For a beam of 3.0 €V the azimuthal
analyzer detects a well established beam for radii less than 5 cm
as can be geen from Fig. 25, For still smaller beam energies which
gppear as barely resolved the azimuthal and radial energy analyzers

detect gsimilar distribution functions for r = 7.0 cm.
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When the beam is accelerated the width in energy remains
width
constant. This implies that- the-tem§a¥a£uxe-an velocity space 1s
drastically reduced., This allows one to approximate the beam by

a delta function. TFor the observed distribution fimetion we can

approximate it by

5 (v - v ) v=(vr2+v¢)l/2

fp(v) = B

L
2ﬂVB
where,ﬁe are in cylindrical coérdiﬁate velocity space.

The beam is represented by a ring of particles of energy EB
in velocity space. The particles'enter the target plasma with
energy EB but £he velocities are distributed over an angle. The
envelope traced out by 't.he angular spread over all points on the
cylindef represents the boundery over which the Ting distribution
showld hold. This, is shown graphically in Fig. 26.

There are two possible causes of the angular spread of the
beam as it enters the plasma. The incoming ions have a finite ion
temperature of ~ .2 eV, The ratio VB/ci represents the tangent

of the angle where 26 is the angular spread, where s

For a two volt beam

VB/Ci = tan 6 = flo



For the.system used we wonld expect the region to have a radius of
% em. A further incresse in the angular spread can arise from
the passage through and between the two fine mesh cylindrical
screens, If a particle passes through the sheath surrounding one
of the screen wires it will be attracted or repelled depending
upon the pqtential of the wire. Cénservation of anguler momentum
‘allows only those ions with small impact parameter or velocity to be
ceptured by the wire. The particle will fellow this perturbed
orbit in the region between the screens and undergo another
randomizing passage through the inner cylindrical screen. In both
of these mechanisms the lower the besm veloecity the greater the:

angular spread will be,

B. Discussion

In order to predict the instability and its dependence upon

beam vélocity the Vlasov equation in cylindrical cocordinates was used:

' 2 .
3f _E’. B  lep B2, len _TZp 2
3t "y ar T _@ m Pty 3V, e Eﬁ T T r Bv¢ =0

We now lock a2t the regtrictions on the distribution functions for a

stationary homogenous equilibrium by setting g% = 0, i% =0, g=0

&xX
to verify the restrictions will be compatible with the ring

digtribution function. We obtain
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v, [ af of
b _o ol _ o
” V¢ avz' - ‘Vr ﬁﬁ; = 0

2

’ 2
The solution to this requires that fo be a function of v = Vf + v¢‘

bnly, i.e.

fofg) = fo(v) = fo( A vﬁ5 )
This restriction holds trivielly for the background ion and electron
Maxwellians. The ring distribution also satisfies this condition
since it depends only on §{v - vﬁ} where v i}vre + v¢2 . Under
these conditions we have a stationary homogenous state, with no
zero order electric field, @bout which we can perturdb.

We have observed the ring distribution function to exist over
& region fhe size of which is determined by the beam energy. The
instabilities obsérved typigglly occur for beam energies of less
than 2 eV. For these energies the ring distribution function is
observed:to_hold in a region that extends to within 35 cm of the
boundary. | v

We can project the ring distribution function onto one axig
in velocity space to see if it corresponds to an unstable distri-

bution unlike the shell distribution function which projects to a
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stable distribution function. The ring distribution in cartesian

coordinates can be represented as:

1 2 2
) =g slv-v) = Ry

Integrating out the Vy dependence we obtain projection onto the

v _ axis as
X

@ 1 2 2
FB(VX) = j‘_w Eﬂ; v+ Ve - Vg dvy
evaluating we obbtain
, _ 1 1
IIB(VX) = E%-——-_-———-—E . for [vx[ < vy
Vg =y
= 0 |vxl.> Vg

This is plotted in Fig. 27. For very large beam velocities FB'(w/k) =0

for low frequency oscillation so the system will be linearly stable.

For very small Vo we ggain expect linear stability. For a range

of VB we expect the system to be linearly unstable.

gomens
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To investigate this we perturb the plasma by writing
-, 3 . . ' -+ -+
f(ry, v, t) = nofo(v) + £y, v, 17 S
Then

af af
=+ Vv G, = =V} + = =0

We can solve this by integrating along the characteristies from

t = 0 to time t.

of
-+ t
fif;, v, t) = [ % b =2 ar

o av
where the integral will follow the characteristics. Initially

we will work in cartesian coordinates using plane waves as a

complete set in which to expand. Here the charscteristics are

given by
X, =X - vx(t -7)
Vo =¥ -v (& -7)
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if we expand 3{y, t) in plane waves and look at one mode.

2(F, t) = 3, oi(ax + by} - dut

then substituting we obtain

5 i ’ -i{av by -
£, Y, 1) = 22 8z, +) j: as o 1E% + by - w)s

<l

=
[¢]
H
[$
w
IH

ot
!

-3

X (ajk +_bvy)

letting t -+ « we have a contribution if w >0 and then

To maeke the connection to cylindrical geometry, we compute

the first order density fluctuations.

e -+
n(r, t) =] £, (r, v, t)av

substituting and using the identities
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X =71 cog B y=1r sin s

v = VvV cos v = V¥ 8in
3 ¢ : $

8 =kcos O b=k sin
we obtain

kv cos (§ - @)

n(I‘, t-) = % @(I‘, t) ‘r vav vr d¢ kv

defining

cos (p-0) -wv v

Gl £,) = K2 [ vav IOE” ap 208 P % 2
cos -

" we have
e 2 0
n(r) t’) = ‘i(r: t)k G(E; fo)

A specific form wes previously chosen for ¥(r, t).

@o to depend on ¢ according to:

év vir/2 dvo
_- i iwv
o= Te /e

Q

We now choose
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We can recover cylinder functions for the perturbed density by using
the identity
W - .

1 1
= - dw
Zv(k.r) = "L‘”o e

i(kr cos w)eiv(w - ﬁ/e)ei\};ﬁ

_The explicit c¢ylinder funetion obtained depends wupon the path chosen
to evaluate the integral: For the boundary condiﬁions of the experi-
ment <IJ"= 0 on the inner cylinder we obtain v = 0 and kr = an, where
oco“L is the pth zero of the Bessel function Jo(p}. To obtain the

dispersion relation we subgstitute the density
n{r, t) = £s5 7 (kr)ke'G(E'l. T )
’ m o o B "o
into Poisson's equation
v% =-Ur T en,
i J d

vhich yields



b

2 w
Dk, w)=L-ZTw ., G (= £..)
X k7 o
j »J J
. of (v)
3 2 2 3 2 kv cos 8 1 0]
=1 Empj ‘r V.J"O "kvcos 8 - oV oV

The terms for background electrons and ions can be reduced

to derivaties of TFried-Conte functions

2
Ty Opg 2 kv cos ® 1 oB
- k2 f:vclvj' 'dek'V'cose-w;r- v

an explicit form for the beam contribution due to a delta funetion

region veleocity space can be caleulated for

vl <12



L5

2 2
1 ké P o 1-npky ;[ u
Dk, 0) =1 -35—% L 5 7’
k 2 ke k \ 2kcl
2 1

-now . W
B pi (wE j kEVBEJB/E

For |vp| > || e must make an analytic continuation of the
dispersion relation for real w. The contribution would be zero
otherwise. This is analogous to the deformation of the contour used
to evaluate the Fried-Conte_functions for v < 0.

Using the UCSB (University of California at Sata Barbara) /;><;
on-line computer system the dispersion relation with a fluid
equation contribution for the jion and electron term has ﬁeen golved
by iteration. The value of k is heldrfixed and the iteration is

performed for s wide range of beam velocities. This is vepeated

for several beam densities. Figure 28 shows a plot of w vs v and

B
¥ vs Vi for the lowest mode with ng = 3. A maximum in the growth
rate is observed for a beam velocity of L.l x 10° cm/sec, The ion

acougtic velocity is 1.5 X lO5

crf/sec for this case., In the region of
meximum growth rate the next part of the frequency is proportional to
ka with

= .6 k
w l'vB
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If we express the dependence of the instability frequency

on beam velocity as

we find the parameter O remains approximately constant as the beam
density is changed. This is shown in Fig. 30. The experimental

value of .66 falls well within the observed range of .
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V. CONCLUSION

In & cylindrical gepmetry compressive ingoing ion acoustic
pulses have been seen to evolve into "eylindrical solitons™. The
properties of these cylindrical solitons have been found to be
consistent with those of one dimensional solitons (previously -
predicted and observed) and three dimensional solitons (previously
seen in numerical solutions). The number of solitons is determined
in a ﬁanner gimilar to the one dimensicnal cese., A detailed investi-
gation of the evolution of bothrplanér and cylindrical solitons
showed that differences exist during the evolutionary phase. For
planai solitons the scaling of the Korteweg-de Vries equation was
found to be insufficient to explain the observed scaling. However,
the scaling has the game functional form for all cases. Detailed
scaling arguments'were foumd to be difficult to appiy tq the evolu-
tion of cylindrical solitons.

An ion-ion beam instsbllity was observed in the presence of
steady state beams for a limited range of beam velocities. The

beam was found to be a ring in velocity space. As the beam velocity 7
was increased from zero there was an abrupt onset of the instability.
The instability manifested itself as cylindrical standing waves.

The frequency of the instability was seen to depend upcon

the beam velocity and an upper limit was found for the beam



velocity above which the instability was not observed. Numerical
solution of the dispersion relation appropriate for the standing

waves yielded good asgreement with the observed instability.



Figure 1

Cylindrical double plasma device with two insulated
concentric plasmas. The inner plasma is produced
in the right half of the- dewvice. DC-beams.can be

controlled by varying @B. If @B is pulse a wave

- ¢an be launched.
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Figure 2

Schematic diagram of the ion energy analyzér. Two
grids and a collector are used. The first grid is

allowed to float negative. The second grid is

" ramped positive while the collector is biased at

-65 volts. Ground shields are placed between the

grids snd the collector to prevent capacitive pickup

between various elements.
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Figure 3

Current collected by the energy analyzer is displayed
versus the volfage ﬁpplied to the retarding grid for
Several different beam energies. The vertical scale
is arbitrary and the horizontal scale is 2 volts per

division.
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Figure 4

Power spectrﬁm,of the electron saturation current
(top)} and a differentisted energy anslyzer trace
(bottom). For the bottom trace the vertical scale
represents the ion distribution funection f(v)
plotted versus the energy to the retarding grid

(L volt per division).

55

e .



IV U R U I S TR

Figure 4

L & 1 .

98



Figure 5

27

A cdmparison of the ion distribution function as seen
by an energy analyzer when plotted versus the voltage
to the retarding grid. {top) and when plotted versus
the ion velocity v (bottom). When plotted versus E
the density and "apparent™ temperature are egqual.
When replctted versuvs v we see that in fact the beam.
density is much legss and the beam has effectively

cooled by its acceleration.
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Figure 6

Propagation of a low amplitude ion acoustic wave
in & fully ecylindrical geometry. The vertical
scale is perturbed eiectron number density |
(arbitrary units) as a function of time (the
horizontal). The width is 200 wsec. The top
trace is taken at r = 9 ¢m end suceeding traces

are at 1 cm intervals.
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Figure 7

61

Schematic of fhe modified double plasma device. The
separation screen shown here as a half cylinder is
continuously deformaeble (from the exterior) to a plane
separation screen. The discharge is maintained by .
filaments in both chambers as in a conventional .IP

device.
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Figure 8 Interferometer trace for a planar separaltion screemn.
The weve amplitude with resgpect to a fixed phase of

e reference signal is plotted as a function of distance.
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Figure 9

Interferometer trace for & half cylinder separation

gcreen with radius 10 om. -
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Figure 10 Computed interferometer trace for half cylindrical
wave, The values of kr, k., from the planar case of
Fig. 8 were used. The amplitude of the appropriate

Hankel function was computed and plotted versus distance.
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Figure 11

Electron density as a functicn of time at r = 0.5 cm,
following the application of a half sine wave pulse.

Signals are labeled by applied pulse amplitudes.
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Figure 12

71

Perturbed electron number density as a function of time
at several radial pbsitions. The dotted traces repre-~
gsent linear (%? < 1%) ion acoustic pulses (ﬁith amplii-
tude adjust for comparison). The solid traces represent
nenlinear pulses propagating, steepening and breaking

into soclitons.
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Figure 13

T2

The left ‘portion shows the perturbed electron number
density detectéd_ atl r = 0,5 em versus time. The right
hand gide shows the received signal versﬁs time at

r = 6 em. The traces are labeled by applied pulse

widths,
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Figure 14

Velocity of a single soliton as a function of the.

maximm soliton amplitude.
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Figure 15

7

Perturbed electron number density as a function of
time at 1 cm intervals. A local minimum is seen to
form between. the first soliton end the remaining packet

8 em from the screen.
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Figure 16

‘ 6
The dimensionless time 7 = :?'t/L plotted versus -
2
the dimensionless scaling paremeter o = (%? L )1/2.
Points for both planar and half cylindrical initial

conditions are plotted and both are distribubed uni-

formly over the graph.
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Figure 17

The dimensionlesg time is plotted vewrsus the dimeﬁ-
sionless scaling pa:r:axneter for several sets of data.
In each set the ini."c.i;al amplitude is held constant
and the width of the applied pulse is chenged to

vary the value of 0.
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Figure 18

83

The effect of the scaling transformation is shown
graphically for bobth the ordinary KdV equation and the
cylindrical KdV equation. For the ordinary K4V
eqﬁation all initialrconditions may be transformed to

a unit width-unit depth initial condition at the origin.
The eylindrical KAV equation, however, transforms %o

a unit width-unit depth initisl condition located

at a radius determined by the initial radius in the

lab and the width of the applied pulse.
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Figure 19

85

The dimensionless time is plotﬁed versus a it scaling
parameter. The function form of the scaling parameter

was chosen to yield & smooth curve,
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Figure 20

87

Power spectrum of detected electron saturation current
during instability, showing the first 3 harmonics as

a function of beam velocity.



Figure 21 Aréomparison of the detected energy aﬁalyzer trace
and a fit to the sum of two Gaussians. This is used
to determine the beam energy very précisely, even
in the region where beam and plasma are not well

separated.
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Figure 22

Power spectrum for the lowest 2 modes shown at

varying radial positions.
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Figure 23

FreqQuency versus beam velocity for the lowest 3

harmonies. No unstable medes are observed for

vy < 0.9 x 10° em/see or vy > 2.2 % 107 em/sec.
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Figure 24(a) TIon distribution function versus voltage applied %o
the retarding grid for the.radial-energy analyzer.
Traces sre labeled by radial positions. The bean

is clearly visible for all radizl positions.
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Figure 24(b)

Ion distribution function wversus voltage applied fo
the retarding grid for the azimuthal energy analyzer.
Treces are labeled by radial posibion end beam energy
is identical with that of Fig. 2k(a). The beam appears

as well resolved st r = 4 cm.
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Figure 25

Azimuthal energy analyzer traces for a 2.5 eV beam.

The beam appears well resolved at r = 5 om.
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Figure 26

Graphical representation of how a radial beam with
an angular spread of 20 gives rise to a uniform
density and ring distribution function in a region

centered about the origin,

101



26

13-

|

il
[

!

pL 1
\
i

1!

AL
rARN

1
il
1

I
1]

|
L]

L1
|
!
}

- Figure 26

28

goT



103

Figure 27 The projection of the ring distribution function onte

one axis. An integrable sigularity occurs at v = % Vge
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Figure 28 Frequency (w) versus beam velocity and growth rate 7
n
versus beam wvelocity for n-;B- = .3. In the region of
N i .
maximum growth rate w = aka, where @ = .6h45. This

plot arises from solution of the dispersion relation.
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Figure 29 Plot of ¢ versus beam density where & 1s determined
| from w = avﬁk in thé region of maximum growth rate.

'i'he valuels of & are determined from numeriecal solution

of the dispersion relation for various values of beam

density.



alpha(?)

| |

l

2 3

BEAM DENSITY

Figure 29

4

90T



109

Figure 350 Memory allocation of data taking program.
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Figure 31 Schematic of location of program control switches.
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Figure 32

' Chip placement diagram for fast buffer memory system.
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Figure 33 Circuit diagram for fast buffer memory system.
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APPENDIX

DIGITAL DATA TAKING SYSTEM

A. General Description

A versatile computer operated-data taking system was con-
structed using equipment available at the University of Iowa. The
‘system consists of a Control Data Corporation {CDC) 160 computer
and asspciated peripheral equipment and an interface to the experi-
mental apparatus. A Biomation 6L0B transient recorder, which
serves as & fast analog to digital converter (ADC), digitizes the
date and transfers it through the interface to the computer for
processing. The Biomaﬁion 610B can digitize 256 data pbints with
s resolution of 1 part in A4 and store them in its own internal
memory for later readouﬁ by the computer. Data can be digitized
at rates up to 100 nanoseconds per point,

The compuber eduipment presently on line with the system is:

1) CDC 160 Computer (4096 words of 12 bit memory)

2) CbC 163 Mag. Tape System (2 tape drives)

3) CDC 166 Line Printer (250 lines per minute)

L} cne 161 Typewriter Station
In addition, the nuclear physics laboratory has a wide range of

competible CDC equipment, including a CDC 1604 computer system



118

with Forfran capability. Tapes can be generated by the CDC 160 to
be processed on the 1604 system. The CDC 160 computer can be
replaced with no changes to the interface by a COC 160-A computer
which has options for up te 32 k of memory.

Interaction of the experimenter with the computer and vice
versa is sccomplished by digital to analog converter (DAC) and by
means of two rows of switches connected through the interface.
Programs are generally written to scen the state of the switches.
Changing the state of a switch will cause the program to branch to
a predefermined routine. In this manner quite general purpose
programs.can‘be written. The DAC's are used to drive scope displays
for the processed data to be displa&ed upén.

With the system described here, many usefal functions are
possiblé. Several of them are: For low amplitude signals or
signals in which the noise is comparable to or greater than the
signal, by digital addition of many passes the relative noise level
is reduced and a clean signal is recovered. Even In the cases where
the noise level is quite small, repeated addition of successive
.passes gives better resolution of the wave form. Precise measure-
ments in time of flight experiments is possible with digital data.
After repeated additions, the meximum (or minimum) is usually
jdentifiable as one channel. For data for which an expected form

is known a computer fit to the data is possible. An example of
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this is seen in Fig. 2. Through the use of digital to analog
convérters, voltage levels from the computer cen be fed to
experimental spparatus, e.g. volbtage controlled oscillators,
remote programmable power supplies, and wave form generators, etc.
With two Biomations correlation function measurements become possible.

With the exiéting equipment these and many more measurements.
are possible, limited only by the time resolution of the analog to
digital converter (Biomation 61OB).

The initial work on the interface from the Biomation to the
CﬁC 160 computer was done by Dr. Stephen Wender [1975]. The
wiring to convert the CDC logic levels (-18,0 volts} to the standard
™71, logic levels (0,5 volts) and the logic ecircuitry necessary to
decode the computer selcction of devices was done first. Two rows
of 12 switches each (used for program control) and circuitry
for inputing from the Biomation were also completed by Dr. Wender.
In his initial degign there were 8 input ports that could be used.
Two were used for program control switches and one was used for
the initial Biomation 6L0B. A second Biomation has recently been
added to the system. The foﬁr remaining. parts can be used for any
device with digital output (e.g., a digital voltmeter).

The author has extended the previous work to include provisiéns
for 8 output ports. One digital to analog converter (DAC) can be

connected to each port. This allowed for computer feedback of
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of voltage signals to the experiment. The most standard use for
the DAC is for scope displays of the digital data. They are also
ﬁsed to drive an x-y plotter for graphical copies of the processed
data.

A fast buffer ﬁemory system was also designed and constructed
to increase the trensfer rate between the Biomation and the CDC 160
computer. The Biomation can output the digital data at a rate of
either 2 microseconds per word or at a rate greater than 512 mié?o-
seconds per word. The CDC 160 computer can input information at a
rate of 4.8 microseconds per word. To obtain maximum transfer rate
the Biomation dumps its memory into & buffer memory at 2 microseconds
per word snd when it is done the.computer reads the buffer memory -
at 4.8 micrcseconds per word. - This decreases the time for transfer

of one data pass from a minimum of .15 seconds to .0015 seconds.

B. Program Deseription

1. Program

Data-Take, D-A, with Autoscale

2. Purpose
General purpose data taking program. B8ignal averaging by
simple addition up to 64 times. Provisions for storing and viewing

up to 12 date gets are included; data can then be dumped on magnetic
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tape with an identifying header of up to 256 symbols. Program

control is by means of the switch box.

3.:TMemory Usage
Locations 00008 to location 10008 aré used for program |
‘stdrage.' Locations lOOO8 to lh’OO8 are used for scratch storage.
Locations J.hOO8 1o 20008 are termed working storsge. Locations
20005 to T777y are divided into 12 storage areas of 1+oo8 = 256,

8
words (see Fig. 30).

4, Program Control Switches

Two rows of twelve switches are used for program control
(Fig. 31). Each row represeﬁts éne computer word and is grouped‘
into four sets of three switghes. Each set of switches rep;esents
one octal digit. Thus, any row of switches can be set to represent
any number from OQOO8 to 77778. The three switches that represent
an octal digit are a biﬁary representation of that digit (e.g., .
on-off-on represents 5). A switch is given a 1 value by setting
and leaving it towesrd the top.

Switches 1-6 on the bottom row are used for program control.
The remaining 18 switches are used to feed information to the pro-
gram a3 it executes. OSwitches 7-12 of the bottom row are used to

tell how many times a sigral should be aversged. They can be setl

from 1 to 778 = 6410.
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S8witeh 1 on the bottom row is used‘fo increase the versa-
tility of the program. The r@ie of switches 2-6 depends crucially
on what position swifch 1 is set to. For switch L = O:

Switch 2; Causes retake of data when set to on position and
then returned to off. Averaging will take place and & return to’
‘the display mode will be made._ In the display modé the last data
set taken is displayed. This is stored in the working stcrage
grea of Fig. 1.

Switch 3: When in display mode setting this switch on then
of'f again causes the displeyed dates to be multiplied by & factor of Z.

Switech 4: When in display mode setting this switch on then
off sgain causes the displayed dafa to be divided by a factor of 2.

Bwitch 5: This is used to store data into one of 12 avail-
ablve storage areas. The storage area is determined by the top row
of switches. Switéhes 1-4 of the top row are used for this. The
computer treats the remaining 8 switches as if they are zero,
regardless of what they arz set to be. The top row is then treated
as the first word address to which the data is to be moved. This
can take on any value from 20005 to 7&008. Switches 1-3 are used
to determine the first octal digit of the location, e.g., 2000,
4000, etc. The fourth switch is used to determine if the data is
stored at x000g if the switch is zero, or at xb0Og if the switch is
gset. Caution. Tt is possible to destroy the program if a store is

made to location 00008 or okooss
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Switch 6: This is used to view the 12 storage areas. Switches
1-4 of the top row select the appro?riate storage area. They can Dbe
changed while switch 6 is set. The remeining 8 switches on the top
row are used to zero one location for display purposes. This allows
comparisons of different sets of data. These 8 switches can take
on values from O to 5778 corresponding to the 256 channels of the
Biomation.

There are two 8 bit D-A converters available to the system.
One of these is comnected to the lower 8 bits of the 12 bit computer
word while the other is connected to the upper 8 bits. Depending
upon the number of times averaged, it may be more convenient to
use one of these over the other. Provisions for this have been
made in the program snd a choice is‘implemented when switeh 1 of
the lower row 1s set to 1. BSwiteh 1 set to 1;

owitceh 2: Used to dump data onto magnetic tape. When
switch L and switch 2 are thrown in that order, the input light on
the typewriter station should come on. A header of up to 256
characters can then be typed in. The symbol "/" is not sllowed as
a valid symbol. At the end of the header a "/" is typed and this
initiates the dumping of the header and the 12 storage areas in the
coﬁputer onto magnetic tape. A return iz then made to the display
mode. Switches 1 and 2 should be returned to the zero position

x
before typing in the header,

%
Tepe to be written on must be loaded on & tape drive with unit
number set to 1, :
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Switch 3: This selects the D-A converter that is connected
to fhe upper 8 bits. The sﬁitch near the oscilloscope must also
be in the correct position. To change from one to the other set the
switch near the oscilloscope to the desired D-A converter and then
flip switch L followed by either 3 or 4. Return both switches to
off and the display should work.

Switeh U: This selects the D-A that is connected to the

lower 8 bits. It is selected as described in the previous section.

5. To Run

Load-program, clear and run from P = 0L00. To iniﬁialize
Biomation remove trigger signal, set to external trigger, clear
computer and run from 0100. Light on left side of console should
display static "IN". ‘Remove from rﬁn; then clear and run from 0LCO.
This assures that the first word input from the Biomation will bhe
recognized by the computer as the first data.point. It may be
hecessary to repeat this later if display indicates improper trigger.
Connedt trigger to Biomation and proceed to take data. 1If problems
occur, run from 100 to take data or from 153 ﬁo go directly fo
display mode. ‘(Note: If it is run from OLO0, the first thing the

program does is try to input data.)

6. Program

160 Data Plot



T. Purpose

To plot data that has been stored on magnetic tape.

8. Memory Usage
Locations 0000 to 1k00 are used for program storage while
locations 1400 to 7777 are used for storing data read in from

magnetic tape,

9. Use

After loading program into computer run from location 0100,
all switcheg on the switch box must be set to zero. The top row
of switches is uged to‘transfer.information to the computer while.
the bottom row is used to control the program. The switches in
the bottom row will be labeled from 1-12 staring ffom the left.

Switch 1: The left most switch is used to input data.from
the tape. Flipping the switch momentarily inputs one file from the
tape and should type out the associated header. If switch is not
returned to zero position, the tape will continue to read in,

Switch 2: Searches forward one file mark on the data tape.

Switeh J9: Bearches backward one file mark on the data tape.

Switch 4: Displays the data on the oscilloscope. It is
used to display several sequential sets of data. The sets to be
displayed are specified by the top row of switches. The left four
bits specify the starting address. The program treats the left four

bits ss the uppermost bits of a word with all other bits set to 0.
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The numﬁer of consecutive sets of data to be display is gpecified
by the lowest four bits of the top row of swi%éhes.

Switch 5: Plots the data on the x-y plotter. The.data to
be plotted is specified in the same way as for displaying with
switeh 4. The upper four bits determine the first data set to be
ﬁlotted while the lower four hits determine the number of plots
to be put on the same page. |

Switch 6: Plots a square to help in the alignment of the
x-y plotter. The square plotted has the maximum renge of x and
¥ values possible and thus serves as a border for the paper.

Switeh 7: Divides ail of memory by 2. This is used in
scaling to the correct height.

“Bwitch 8: Multiplies.all of memory by 2 in case the date is
too small.

Switch 9: Displays locations 1400 to 2000 with the channel
sﬁecified by the lower 8 bits of the top row set to zero. This
can be used to follow the evolution of & waveform.

Switeh 10: Used to exchange certain spectrum that are
specified. The contents of locations 1400 to 2000 are exchanged
with the data sterting at the location specified by the left k4
bits of the-top rov.

Switch 1l: Adds the amount specified by the lower 8 bits
of the top row to the spectrum stored starting in location 1400.

This is used to adjust the heights of different spectrum.
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Switch 12: Displays both the contents of locations 1L0O
to 2000 but also the spectrum.épecified by the left 4 bits of the
top row. This is used to compsre the preéent data set to which
cne is adding set amouﬁt to the previously adjusted data set. With
switch 12 set, any other switeh can also be used. (Note: With
‘switch 12 end switch i there is a slight problem with triggering
of the oscilloscope. It is necessary to expand the trace with the
time base slightly in order %o get all of the traces displayed

properly. )

C. High Speed Buffer Memory

In order to fﬁlly utilize the high spéed characteristics of
the Biomation 610B, it is necessary tolbuild a high speed buffer
memory. With this memory it is possible for the Biomation torread out
its memory at 2 microseconds per word and then for the 160 computer
to read the information at its highest possible operating épeed.

This fast buffer memory is built on a card that fits into
the original interface built by Dr. Stephen Wender. It makes use
of the signals svailable from the interface. Figure 32 shows a
disgrem of the chip placement on the card. Figure 33 is a schematic
circuit diagram with a list of the integrated circﬁits used,

The sequence of events that oceur is desceribed below. The
computer executes a 7500 5400 instruction. When this happens,

the 5400 A line from the computer makes a O to 1 transition. This
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causes the ocutpubt of ICSA to make a 1 to O transition. This

fires fhe one-shot IC19. The Q output of this is used to arm

the Biomatidn. The a ig fed into;hand gate IC10A. The output

of this is fed to the clear pin of the 4 bit counters ICL3-1k.
After the Biomation is srmed, it will be triggered and the flag
‘will go high. The flag is inverted by ICSC and fed to the write
enable memory chips where it causes the Informetion putoutlby

the Biomation to be written into the memory chips. This sig-

nal is also nanded through IC11A to the one-shot ICL7. The firing
of the one-shot advances the counters, so the next word from the
Biomation will be read into the next memory location. The flag
from the Bicmation is also invertéd twice by ICGD and E and fed to
the word-commaﬁd on the Biomation. Thig causes the flag to be
removed until the next wofd is available. After executing the 7500
5400 sequence a TE0O (input to A) is executed. The input request
line from the computer mskes a 1 to O transition. This, combined
with the 5400 A line from the interface, is fed through IC12A and B
and through ICOF to cne input of IC10B. The other input of the
nend gate IC10B comes from an 8 input nand gate where the inputs
are hobked to the 8 address lines of the binary counters. It fires
when the Biomation has read out all 256 channels. The output of.
IClelis fed to the information ready and the computer resumes

operation.
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A similar procedure is followed to resd the information from
the memory chips to the computér. The computer execules & 7500
5401 which causes the 5401 A to make & O to 1 transition. This is
fed through ICSB and fires the one-shot IC20. This is then fed to
the clear inputs of the counters. The input regquest is inverted
by IC12A nanded with 5401 A by IC12C. The output of this is then
fed back to the information ready. It also fires the one-shot
IC16. This is nanded through IC11A to fire the one-':.shot ICLT
The purpose of IC16 is to put in a delay before ICLT fires to
advance the counters., Input continues at the maximum rate

possible for the computer.

Integrated Circults Used

No. Type : Description Symbol
6 Ths206 256x1 RAM Memory IC1-6
2 54193 4 Bit Counters TC13-1}
2 Tu357 Buffered Nand ' IC7-8

5 74121 Monostable Multi- 1016-20

vibrators

1 7430 8 Input Nand Gate IC15

1 Thok Hex Inverter N 1C9

3 7400 Quad 2 Input Nands IC10-12

Note: The 54193 could be a 741951
External resistors of 10 K are hooked between the
outputs of the memory chips and +5 volts. These are described in

the literature for the Ths206.
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Observations of Ion-Acoustic Cylindrical Solitons
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Cylindrical solitons are seen to evolve from compressive cylindrical pulses in a coll-
sionless plasma. The properties of these solitons are found to be consgistent with the
known properties of one- and three~dimensional solitons.

Soliton solutions are now well known for at
least seven distinet one -dimensional wave 8ys-
tems.! In particular, the soliton solutions of the
Korteweg~de Vries (KdV) equation have been ex-
tensively studied both theoretically and experi-
mentally during the last decade and KdV is now
known to approximately describe many Systems
which include nonlinear and dispersive effects.*
Washimi and Taniuti® have shown that slightly
nonlinear one-dimensional ion acoustic waves in
collisionless plasmas with cold jons are described
by KdV. In a recent Letter, Maxon and Viecelli,?
following the procedure of Ref. 2, have derived a
modified KdV equation for spherically symmetric
ingoing waves. In this Letter we present experi-
mental observations of cylindrical solitons in a
collisionless plasma.

One-dimensional solitons have several distin-
guishing characteristics,* ! Among them are
the following: (1) Arbitrary positive {compres-
sive) density perturbations evolve after sufficient
time into a superposition of spatially zeparated
solitons (solitary pulses). (2) The number and
amplitude of the solitons is determined by the so-
tution of an appropriate time-independent Schré-
linger equation with a potential well that is pro-
sortional to the initial spatial density perturba~
on, One soliton is formed for each bound state
vith seliton amplitude proportional to the energy
sigenvalues. (3) The soliton velocity is given by
1+%(6n/n)c,, where &n/n is the maximum den-
sity perturbation of each soliton and ¢, is the ion
lcoustic velocity. (4) The spatial widths are pro~-
ortional to (6n/r) "'/%, which implies that the
iroduct of the square root of the maximum soli-
on amplitude multiplied by the width is a con~
tant, (5) Solitons retain their identity upon col-

lision with other solitons,

All of these properties have recently been veri-
fied experimentally with collisionless plasmas,
Linear double-plasma (DP) devices were used by
Tkezi, Taylor, and Baker' to verify all but the
second property, and by Hershkowitz, Romesser,
and Montgomery" to verify the connection with
the underlying Schridinger equation fproperty
{2). Cohn and MacKenzie!® investigated solitons
resulting from very large density perturbations
produced by photoionization, A summary of much
of the experimental evidence has been given by
Ikezi.l®

In the first work, which considers solitons of
dimensionality greater than one, Maxon and Vie-
celli’ have numerically determined that spherical
solitons have the following four properties. First,
an ingoing soliton increases in amplitude while
decreasing in width, thus retaining its identity
as a single soliton. Second, the product of the
Square root of the maximum socliton amplitude
multiplied by the width is a constant, Third, a
small residue develops and moves inward behind
the soliton, taking up a measurable percentage
of the total momentum; and fourth, the soliton
velocity is somewhat greater than the velocity of
a corresponding one-dimensional soliton.

In this Letter we present data showing that cyl-
indrical solitonlike objects exist and that their
properties are consistent with those of one- and .
three-dimensional solitons. These results are
to our knowledge the first experimental evidence
for solitons of dimensionality greater than 1.

Experiments were carried out using a cylindri-
cal DP device which had previously been used to
study the ion-ion beam instability of cylindrical
beams and background plasma.' Two concentric

581
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cylindrical plasmas (length 30 cm) are separated
by two closely spaced, fine-mesh, concentric
eylindrical screens with inner screen diameter
equal to 20 em. The outer screen is negatively
biased to prevent the flow of electrons between
the plasmas, and the inner screen iz grounded.
The ion density was approximatelty 10° cm™ and
the ion and electron temperatures were approxi-
mately 0.2 and 3 eV, respectively. Positive half-'
sine-wave pulses are applied to the outer plasma
to launch cylindrical density perturbations in the
inner plasma. )

Signals are detected by a positively biased
Langmuir probe which has variable radial posi-
tion. No azimuthal dependence was observed.
Figure 1(a) shows the perturbed electron number
density as a function of time at several radial
positions for both large and small initial density
perturbations, For the small-amplitude pulse at
=9 cm we can identify an ingoing pulse, which
is quite similar to the applied pulse, followed at
a later time by a similar outgoing pulse that has
propagated from the opposite side and through
the center., As the probe is moved closer to the
center the ingoing and outgoing pulses approach
each other, merging at the center. For the large-
amplitude compressive pulse at =9 cm the ingo~
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FIG. 1. {a) Perturbed electron number density as a
function of time at several radial positions, Upper
traces, linear (4n/n<1%) ion acoustic pulses (with am-
plitude adjusted for compariscn), Lower traces, non-
linear pulses propagating, steepening, and breaking io-
to solitons. (The received signals are digitized and
stored on magnetic tape for later analysis. This is the
cause of the observed steplike structure.) (b} Perturbed
electron number deosity detected at #=0.5 cm labeled
by the applied pulse widths., (c¢) Received signals at »
=6 em labeled by applied pulse width.

682

ing pulse is seen to be similar to the applied
pulse, but three solitons can be identified in the
outgoing pulse, The traces at other radial posi-
tions indicate how the initial density perturbation
evolves into the solitons. The increased velocity
of the first two solitons compared to the ion
acoustic velocity is evident. Once formed, the
largest soliton is seen to be much narrower than
the applied pulse, We find that the average veloc-~
ity of the largest ingoing soliton is approximately
1.17¢,. The application of a negative (rarefac-
tive) density perturbation is not found to evolve
into solitons,

As in the one-dimensional DP device, the maxi-
mum applied voltage is limited by the eleciron
temperature.’® For applied voltages larger than
the electron temperature (here =3 €V), particle
bursts (pseudowaves) are detecied. Data were
taken with the largest initial density perturba-
that could be obtained without launching pseudo-
waves. The width of the applied pulse was then
varied to determine how the soliton number de-
pended on the initial density perturbation (see
Fig, 1), This procedure was identical to that fol-
Iowed in our earlier measurements (Ref. 13).
Figure 1(b} shows how the signal received, »
=0.5 em, depends on applied pulse width. Widen-
ing the applied pulse rasults in increased ampli-
tude, decreased width, and increased velocity in
the received signal, In the top trace we see one
well-defined soliton. In the second trace the
first soliton has grown and narrowed and a sec-
ond soliton is apparent. In the third trace the
first two solitons have grown, narrowed, and
speeded up. A third soliton is barely apparent,
We find that the square root of the maximum am-
plitude multiplied by the widih is constant to with-
in 10% for the first four tracea. In the fourth
trace the third soliton is seen to grow as well.
For further increases in width the solitons no
longer have sufficient time to separate from the
initial perturbation. Figure 1(c} shows the sig-
nals corresponding to the same six applied pulse
widths as detected at »=6 cm,

For small applied pulse width it is possible to
launch single solifons whose amplitude depends
on the applied pulse width. The amplitude of an
incoming soliton was found to be approximately
constant over much of its trajectory as a result
of a2 competition between damping and geometric
growth (see Fig, 1). This simplified the deter-
mination of the amplitude dependence of the ve-
locity, Figure 2 shows the soliton velocities, de-
termined from individual soliton trajectories,
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FIG. 2. Veloeity of single solitons as a function of
the maximum soliton amplitude,

versus soliton amplitude. The best least-squares
fit to these data gives v =[1 +a(6n/n))c,, where a
=1.05+0.20, This is faster than a corresponding
one-dimensional soliton,

This experiment differs from an idealized cne
in at least two respects. First, as in one-dimen-
sional experiments, damping is present, After
accounting for a geometric increage which goes
like (r,/7)'/%, the ion acoustic pulse is seen to
damp by about a factor of 3 in propagating 9 cm,
and the soliton damnps by a factor of 1.5, In the
abgence of damping, the geometrical growth fac-
tor (»,/¥) should only be expected to hold for lin-
ear ion acoustic pulses., Second, the density per-
turbation is not found to diverge at the center,
We attribute this result in part to broadening of
the received pulse as a result of variations in
the radius of the cylindrical screens of the order
of 0.3 cm and to finite size of the probe and of an
insulating glass eylinder (0.5 cm) which covers
all but the last centimeter of the probe.

We summarize the measured properties of two-
dimensional solitons, Compressive density per-
turbations evolve into solitons., The number of
the solitons is determined by the width and ampli-
tude of the applied pulse. Rarefactive perturba-
tions do not evolve into solitons. The solitons
retain their identity after converging (colliding)
at the center, All of these are well-known prop-
erties of one -dimensional solitons. In addition
we find that the soliton width multiplied by the
square root of the maximum goliton amplitude is
approximately constant even though the ampli-~

fude, width, and velocity are functions of time,
The velocity is somewhat greater than the veloci-
ty of a corresponding one-dimensional soliton.
Both of these properties of three-dimensional
solitons and the first holds for one-dimensional
solitons as well,

Maxon has recently derived a modified Kdy
equation for cylindrical selitons.'” Detailed com-
parison with numerical solutions of this equation
will be presented in a later publication. Attempts
will be made to compare the amplitude, width,
and propagation speed as a function of time with
numerical solutions of a modified KAV equation
for cylindrical solitons which includes damping
when such results become available,

We thank 8. Maxon for helpful discussions and
Alfred Scheller for construction of much of the
apparatus.
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The ion-ion instability iz studied in a cylindrical double-plasma device. Low frequency
cylindrical standing waves are found which are one-dimensional in character with fre-
quency proportional to beam velocity. An approximate dispersion relation for the eylin-

drical standing waves is derived.

Double-plasma (DP) devices have recently been
used to study the incoherent ion-ion two-beam in-
stability produced by one-dimensional beams in
unmagnetized plasmas.'™ This turbulence is
found to be fhree-dimensional in eharacter in
agreement with the linear theory of the ion-ion
instability®™ whieh predicts that the instability
depends on k-¥,, where K is the plane-wave prop-
agation vector and ¥, is the beam velocity. Al-
though there is an upper limit on v, beyond which
the one-dimensional ion-ion instability will not
grow, there always will be obligue directions for
which the projection of ¥, on k will give growing
modes in three dimensions, Means ¢f «l.!® have
recently argued that the observation of turbu-
lence in experiments with one-dimensional elec-
trostatic ion acoustic shocks depends fundamen-
tally on this {hree-dimensional property of the
instability.

In this Letter we report the production of a
coherent ion-ion instability which is essentially
one-dimensional in character. This has been ac-
complished by generating eylindrical Standing
waves which are resonant with ingeing and éut-
going beams in a cylindrical DP device at the
University of Iowa. This device differs from con-
vential DP devices'™ in that the cylindrical bound-
ary of the plasma plays a dominant role. A
grounded cylindrical screen through which the
beam in injected, serves as a well-defined bound-
ary condition (vanishing potential) for the stand-
ing waves. In conventional devices!™ the dimen-
sions were such that wave and particle phenom-
ena were not significantly affected by the pres-
ence of boundaries, The dimensions of those de-
vices were lurge compared to the ion charge-ex-
change length, the ¢ folding distance for jon-
acoustic waves, and all wavelengths of interest.
In the cylindrical DP device described here the
diameter of the plasma is comparable to these
lengths, ‘

A description of these standing waves is de-
rived from the Vlasov eguation in a ¢ylindrical

754

geometry. The dependence of the frequencies w
of the instabilities on the beam velocity is shown
to be remarkably similar, but not identical, to
the results for a strictly one-dimensional ion-
ion instability.

The cylindrical DP device, which has recently
been used to study cylindrical solitons," is shown
in Fig. 1. Two concentric argon plasmas are
separated by an outer negatively biased screen
and an inner screen held af ground potential,
Plasma within the inner cylinder is produced in
an adjacent connected chamber, Typical operat-
ing parameters were electron temperature T,
=1 eV, ion temperature 7;%~0.1 to 6.2 eV, aver-
age plasma density », ~ 10° to 10° cm ™%, and pres-
sure = 2x107* Torr, A steadv-state radially in-
going cylindrical beam is formed by raising the
plasma potential in the outer cylinder., Beam
density ratios n=n,/n, are controlled by varying
the concentric discharges. The ion charge-ex-
change length was greater than the inner-cylin-
der radius,

Energy distribution functions in the inrer plas-
ma {region A in Fig. 1) are measured with two
energy analyzers with depth-to-area ratios great-
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FIG. 1. Cylindrical DP device with two insulated con-
centric plasmas. The inner plasma is produced in the
right half of the device. Beam energy is conirolled by
varying ¢5. $p, filament supply voltage; ¢ filament-
to-wall voltage; @y, applied bias voltage. T,=1.0 eV;
T,£0.2 eV; Ny=10°-10" cin™%; pressure, 2X107¢ Torr.
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FIG. 2. Typical radial and azimuthal energy-analyzer
traces at 5 and 8 ¢m are shown. Similar traces are ob-
served for radii less than 6 em indicating the presence
of a ring distribution function in velocity space. The

.absence of an azimuthal beam at 8 cm is apparent.

Azimuthal traces are found to be independent of v.
Broadening of these traces is instrumental.

er than 1, whose radial coordinates can be va-
ried. One energy analyZer measures the energy
distribution function of particles with velocities
in the radial direction, another ohserves the
energy in the ¢ direction. A third measures out-
going energy distribution functions.in the outer
plasma (region B in Fig, 1), Typical energy-
analyzer traces are shown in Fig. 2. Near the
inner screen the beam is seen to be radial, For
radii less than 7 cm we find approximately equal
radial and azimuthal beam components, indicat-

.ing that the beam forms a ring in velocity space.

The spatial region over which the ring distribu-
tion function exists is determined by the beam
velocity, and the separation and mesh size of the
two concentric screens, The region increases
for smaller energies, The presence of a ring
distribution function rather than a purely radial
beam resuits in a uniform beam density (<7
cm) with no steady-state eleciric field. This
facilitates a theoretical description of the in-
stability.
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FIG. 3. (a} Power spectra showing the firgt three

harmonies as a funetion of beam velocity. () Fregquen-
ey versus beam velocity for the three lowest harmon-
ics. No growing modes are cbserved for vb <0.9x1p8
cm/sec and for v,>2.2%10° cm/sec.

Instabilities are detected by positively biased '
Langmuir probes oriented in the axial direction
and by the erergy analyzers. One Langmuir
probe is variable in the radial direction and the
other is variable in the ¢ and axial directions.
Langmuir probes indicate that relatively uni-
form background plasma and beam densities are
achieved in this device. Langmuir-probe mea-
surements within the inner eylinder (region A in
Fig. 1) showed no ¢ or z dependence {except near
the cylinder ends). . :

A comparison of signals mmultaneously ob-
tained at different positions showed that the in-
stability was in phase throughout the inner plas~
ma, demonstrating that standing waves were pro-
duced Therefore it is meaningful to consider
power spectra. Typical instability power spec-
tra as a function of beam veloeity are shown in
Fig. 3(a). For high beam velocities we observe
no instabilily, The onset of the instability is
seen for a beam energy of approximately 1.0 eV,
For beam energies less than approximately 0.2
eV the instability disappears, As the plasma po-
tential of the outer plasma is made less than the
potential of the inside plasma we observe inco-
herent instabilities between the outer cylindrical
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screen and the cuter walls of the chamber {re- menies, In addition, the second and third har-
gion Bin Fig. 1). ; monics have approximately 2 and 3 times the fre-
Measurements of the power spectra in the ra- quency of the first, This suggests that w/k, = ey
dial direction show that the three lowest frequen- with & constant, describes all three modes, with
cies correspond to resonant modes with no nodes, k, varying approximately with the mode number,
one cylindrical node, and two cylindrical hodes, These resulis ean be understood by consider-
respectively, further demonstrating eylindrical ing the linear Vlasov equation in eylindrical geo-
standing waves. Figure 3(b) shows that w is metry. The Vlasov equation can be written for
roughly proportional to v, for the first three har- | one component {ions or electrons) in the follow-
ing way:
8 ) o o a
—a{-i.vr-;é +v¢$+(%Er+v¢2r'l)3&+(§2E¢-—vrv¢r")5-£=0. : : (1)

For a stationary homogeneous equilibrium distribution fol#y v,5 v,) with E =0, we find v v, 81/ By,
~ v, df,/ 8z,)=0. This means that the zeroth-order distribution function depends only on the magnitude
of the velocity, f,=/,(v)} =1 [(v,? +v q,,2)1/2]; Le., the distribution is concenfric in velocity space and the
beam must be a ring. Experimentally, we find such a distribution function extending from the center
to within 3 em of the inner screen for beam energies less than 2 eV,

Perturbing the plasma, we write 7(%,¥, )= nofolt}+ Fi(F, ¥, £), where f,(F, ¥, £) is given by

LE T, 8= [Faty Ve F(F, ¥, £~ £), £,) - o7, (v)/ o5, - (@)
with @ being the electrosiatic potential. The time integral is taken along the straight-line orbits of
the unperturbed state. In evaluating the time integral we consider the plane-propagating waves O(F, £)
=dqexpli{ax + by — wl)| = b, expli[kr cos{¢ -~ a) - wi]}. Then the integral in Eq. (2) can be performed to
give _ :

' o € . kvcos(6— o) aflv) ' ‘
f‘(-f’v’t)_m (7, t)kucos(ﬁmar)—w véy * ' _ (3)

In writing Eq. (3) and the potential we have used the following definitions:
X=¥CO8¢, y=rsing, v_=vcoss, v,=vsing, a=kcose, b=ksino.

When calculating the density from Eq. (3) by integrating over v and 6, we note that the dependence of
cos(6~ @) on a can be suppressed because ¢ is integrated over all angles. Thus we obtain for the
density

ni¥, &) =_£°"v dvﬁ"d 851 =(e/mmnd(F, R*Glw/k, f,), @)
with |
@ pemfw o pwpo cosd 8 (1) o S '
G(E’fc') =k zj" vdvf dgcose-w/ku voav & _ (5)

In order to express the density in cylinder functions we let $, depend on ¢,. & a)= (&, /m)explive
- vr/2), and integrate over ., A change of the variable o to w=A4+¢ and an appropriate extension of
the limits of the integral to infinity produces the integral representation of the Hankel or Bessel func-
tions Z ,(kr)explivy). Thus we can write

#lr, )= (e/m)® 2, (br) explive)G . ®
The densities have to be inserted into Poisson’s equation,
- Vie=4ny} e,n,. , (7)

We note that Z ,(kv) exp(ive) is an eigenfunction of the Laplacian. This shows that cylinder functions
are eigenfunctions of the beam-plasma system. For the boundary conditions of the experiment, % =0
on boundary, we obtain directly v=0, kR = @o,, Where 0, is the uth zero of the Bessel function Joloh.
It is important to notice that these are the only nonsingular solutions and they represent standing
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waves. The dispersion relation is found from Eqs. (7), (6), and (5):

. o 2 kvcost  af,,(v) _
D&, w)=1—§;w”G!=1-z;‘wpfk zj; vde ngkvcose—w y"gy =0, (8}

Note that & = a4, /R. B is not a plane-wave propagation vector,

We consider now a background plasma with Maxwellian ion and electron distributions with 7,>> T,
In addition we have a radiai influx of ions of velocity v,, which can approximately be described by
fy @)={n,/270,)6{v —=v,). From the Penrose criterion it follows that for smail », the system is stable
as well as for very large v,. Both effects have been observed experimentally [compare Fig. 3(b)].
From the assumed distribution functions we find for very small ion beam density (<< 1) and for v,
#RT,/m, 2= €,

w=+ky |1+ 3 exp(2i/3)e, 3w 2 - 22

For the case of resonance (v, =c¢.} we find w= +hu[1+43 L1275 exp(2mi /56) ]. The exper*mental proportional-
ity of w with v, is evident from Flg 3(b) which corresponds to n={.2.

In conclusion we have shown that low-frequency cylindrical starding waves which depend only on #
are produced by the ion-ion beam instability in a cylindrical DP device. We have shown that their fre-
quency is roughly proportional to the beam velocity. We believe that this is the first time that a coher-
ent ion-ion beam instability has been observed. We ascribe this to the high symmetry of the experi-
ment which substantially reduces the off-axis modes. We have derived a dispersion relation for the
coherent cylindrical-sianding-wave instability from the appropriate Vlasov equations for the eylindri-
cal geometry. This predicts unstable standing waves with w/k, proportional to v, rather.than travel-
ing waves. ‘
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